Lecture 4

Lecturer: Ronitt Rubinfeld

1 Randomized complexity classes RP, BPP

Definition 1 A"language" L is a subset of $0,1^{*}$
Definition 2 " P " is a class of languages with polynomial time deterministic algorithms A such that

$$
\begin{gathered}
X \in L \Rightarrow A(x) \text { accepts } \\
X \notin L \Rightarrow A(x) \text { rejects }
\end{gathered}
$$

Definition 3 " $R P$ " is a class of languages with polynomial time probabilistic algorithms A such that

$$
\begin{aligned}
& X \in L \Rightarrow \operatorname{Pr}[A(x) \text { accepts }] \geq \frac{1}{2} \\
& X \notin L \Rightarrow \operatorname{Pr}[A(x) \text { accepts }]=0
\end{aligned}
$$

This is called " 1 -sided error"
We can get more reliable answer by run $A^{k}(x)$ which is running k times of $A(x)$ with fresh random coins each time:

Algorithm If all k runs reject then reject, else accept

Behavior of algorithms

$$
\begin{gathered}
x \notin L \Rightarrow \operatorname{Pr}[\text { accept }]=0 \\
x \in L \Rightarrow \operatorname{Pr}[\text { accept }] \geq 1-2^{-k} \\
\beta=2^{-k} \Rightarrow k \geq \log \frac{1}{\beta}
\end{gathered}
$$

Definition 4 "BPP" is a class of languages with polynomial time probabilistic algorithms A such that

$$
\begin{aligned}
& X \in L \Rightarrow \operatorname{Pr}[A(x) \text { accepts }] \geq \frac{2}{3} \\
& X \notin L \Rightarrow \operatorname{Pr}[A(x) \text { accepts }] \leq \frac{1}{3}
\end{aligned}
$$

This is called "2-sided error"
We can still get a more reliable answer by running A for k times and taking the majority answer, yielding the following behavior:

$$
\begin{gathered}
\operatorname{Pr}[\text { each run is correct }] \geq \frac{2}{3} \\
\operatorname{Pr}[\text { majority of runs correct }] \geq 1-\operatorname{Pr}[\text { majority incorrect }] \\
\left.\sum_{i=1}^{k} \sigma_{\left[i^{\text {th }}\right.} \text { run correct }\right]
\end{gathered}>\frac{k}{2} .
$$

By Chernoff bound with $\beta=\frac{1}{4}$,

$$
\begin{gathered}
\operatorname{Pr}\left[\# \text { runs correct }<\left(1-\frac{1}{4}\right) \frac{2}{3} k\right] \leq e^{\frac{-\left(\frac{1}{4}\right)^{2}\left(\frac{2}{3}\right) k}{2}} \\
\operatorname{Pr}\left[\# \text { runs correct }<\frac{k}{2}\right] \leq e^{-\frac{k}{48}}
\end{gathered}
$$

Let $k=48 \log \frac{1}{\delta}$,

$$
\begin{gathered}
\operatorname{Pr}\left[\# \text { runs correct }<\frac{k}{2}\right] \leq \delta \\
\operatorname{Pr}[\text { majority of runs correct }] \geq 1-\delta
\end{gathered}
$$

Observation $5 P \subseteq R P \subseteq B P P$
An open question is whether $P \stackrel{?}{=} B P P$

2 Derandomization

2.1 via enumeration

Given probabilistic algorithm A and input x $r(n)$ is the number of random bits used by A on inputs of size n.

1. Run A on every random string of length $r(|x|)$ $r(n) \leq$ runtime of A on inputs of size n
2. Output majority answer

Runtime $O\left(2^{r(n)} t(n)\right)$ where $t(n)$ is the time bound of A

2.2 via pairwise independence

2.2.1 Max Cut problem

Given $G(V, E)$, output partition V into S, T to maximize $|\{(u, v) \mid u \in S, V \in T\}|$ (i.e. number of cuts)

Randomized algorithm

- Flip n coins $r_{1} \cdots r_{n}$
- Put vertex i on side r_{i}

Analysis let

$$
\begin{gathered}
\mathbb{1}_{u, v}=1 \quad \text { if } r_{u} \neq r_{v}, \quad 0 \quad \text { otherwise } \\
E[c u t]=E\left[\sum_{(u, v) \in E} \mathbb{1}_{u, v}\right]=\sum_{(u, v) \in E} E\left[\mathbb{1}_{(u, v)}\right]=\sum_{(u, v) \in E} \operatorname{Pr}\left[r_{u} \neq r_{v}\right]=\frac{|E|}{2}
\end{gathered}
$$

This is "2-approximation" as the best answer could be $|E|$

2.2.2 Pairwise Independence

Definition $6 n$ values $x_{1} \cdots x_{n}, x_{i} \in T$ such that $|T|=t$
"independent" if $\forall b_{1} \cdots b_{n} \in T^{n}, \operatorname{Pr}\left[x_{1} \cdots x_{n}=b_{1} \cdots b_{n}\right]=\frac{1}{t^{n}}$
"pairwise independent" if $\forall i \neq j, b_{i} b_{j} \in T^{2}, \operatorname{Pr}\left[x_{i} x_{j}=b_{i} b_{j}\right]=\frac{1}{t^{2}}$
" k-wise independent" if \forall distinct $i_{1} \cdots i_{k}, b_{i_{1}} \cdots b_{i_{k}} \in T^{k}, \operatorname{Pr}\left[x_{i} \cdots x_{k}=b_{i_{1}} \cdots b_{i_{k}}\right]=\frac{1}{t^{k}}$

Example | | r_{1} | r_{2} | r_{3} |
| :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 |
| | 0 | 1 | 1 |
| 1 | 0 | 1 | |
| | 1 | 1 | 0 | say for indices $1,2 b_{1} b_{2}=00 \Rightarrow \operatorname{Pr}\left[x_{1}=0, x_{2}=0\right]=\frac{1}{4}=\frac{1}{t^{2}}$

2.2.3 Using Pairwise Independence in Max Cut

$$
\begin{array}{cc}
& b_{1} \cdots b_{m} \\
\text { From the above example: } & m=2
\end{array} \Rightarrow \begin{gathered}
\text { "randomness generator" } \\
n \geq m
\end{gathered} \begin{gathered}
r_{1} \cdots r_{n} \\
n=3
\end{gathered} \Rightarrow \text { Max Cut algorithm }
$$

Observation 7 If the random bits of the generator are good enough for the algorithm, then one can derandomize the algorithm by doing enumeration on the m bits going into the randomness generator. This would require time $O\left(2^{m}\right)$, rather than the usual $O\left(2^{n}\right)$

Idea Use $m=\log n$ independent random bits, and turn them into n pairwise independent random bits

How to generate?

1. Choose m truly random bits $b_{1} \cdots b_{m}$
2. $\forall s \subset[m]$ s.t. $s \neq \emptyset$, set $c_{s}=\bigoplus_{i \in S} b_{i}$
3. Output all $c_{s} \Rightarrow 2^{m-1}$ bits
exercise why are they pair-wise independent?

Algorithm

For all choices of $b_{1} \cdots b_{\log n+1}$

- Run Max Cut using random bits of randomness generator on input $b_{1} \cdots b_{\log n+1}$
- Evaluate cut size
- Output best cut size

Runtime $\quad 2^{\log n+1} \times$ (runtime of Max Cut + runtime of generator)

Randomness generator as a function $b_{1} \cdots b_{m} a, b \in Z_{q}$ where q prime

$$
\begin{gathered}
r_{i} \leftarrow a_{i}+b \bmod q, \forall i \in 0 \ldots q-1 \\
b, a+b \bmod q, 2 a+b \bmod q
\end{gathered}
$$

can take a, b, c and use $c i^{2}+a i+b \bmod q$ to do 3 -wise \Rightarrow can generalize to k-wise

